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Requirement from SOW: Task 1: Prioritization study of elements relevant to countering-
weapons of mass destruction (C-WMD) 

A systematic study of the priority in which elements should be investigated in order to 
maximize the possible impact of this research.  Currently, a preliminary list of the 
elements proposed for study, in order of interest are Pu, Am, Cm, Np, Th, and Eu.  This 
list should be updated to reflect an order of priority based on the utility of specific 
isotope abundances for device diagnostics and the simplicity of developing the RIMS 
method for the measurement of such isotope abundances.   

Deliverable – 6 months after project start, a technical report summarizing findings and 
conclusions of the prioritization study will be provided. 
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Abstract/Summary 
 

A systematic study of the priority in which elements should be investigated in order to 
maximize the possible impact on RIMS Counter-WMD research has been carried out.  
Candidate elements included U, Th, transuranic elements, and select fission products 
such as Tc and Eu.  This list has been updated to reflect assessments based on potential 
utility to debris diagnostics as well as the degree of complexity required to develop the 
RIMS method for the measurement of expected isotope abundances. Factors considered 
in this study include production of actinides in a fission environment, the existence of 
available resonance ionization-specific spectroscopic work, as well as practical 
experimental considerations (sample synthesis for research and activity/safety 
considerations). The resultant prioritized list of additional elements (beyond U) to be 
carried forward in this study are, in order of interest, Pu, Am, and Np.  If resources and 
time lines permit, we would also like to investigate Th and Eu. Cm would be a final 
choice due to the logistics of creating and handling higher activity, short-lived materials, 
and the paucity of pre-existing spectroscopic studies. 
 
 

Background and Approach 
 

Resonance ionization mass spectrometry is a method of determining isotopic 
compositions in materials that excels at suppression of isobaric interferences (e.g., 
Donohue & Young, 1983), and detection of rare and ultra trace species (e.g., Wendt et 
al., 2003). Our research has focused on the optimization of RIMS measurements in the 
absence of pre-analytical sample chemistry. To optimize analytical stability, an 
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understanding of key laser and spectroscopic parameters are required. A systematic study 
of the priority in which elements should be investigated in order to maximize the possible 
impact on RIMS Counter-WMD research has been carried out. In considering the 
objectives of this task, we relied on literature related to both the RIMS process and the 
ionization and other properties of the candidate elements, as well as discussions with 
debris diagnostics experts and related literature. 
 
Excellent studies such as those by Hurst et al., 1976 and Wendt et al., 2005 provide a 
valuable summary of an element-by-element assessment of the amenability of each 
element to analysis by RIMS. Figure 1, excerpted from this study, provides an overview 
of the published RIMS spectroscopic and isotope measurement studies. Compilations of 
relevant spectroscopic data are available in Donohue et al., 1985; Morton, 2000; 
Sansonetti and Martin, 2005 and others. 
 
 

Figure 1: A periodic table of elements indicating those that have been or can be explored 
through Resonance Ionization using presently available and under development RIMS 
methods. While most elements are accessible by RIMS (in red, blue and green), 
published studies of resonant excitation spectral levels (in blue and green) remain under 
development for many systems, and demonstrated isotopic measurements by RIMS 
(green, only) remain untapped (in great part because significant advances in laser stability 
have only become possible in recent years, see Isselhardt et al., 2011). 
 
 

Targeted Elements 
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Uranium, the most easily available and the most common element in nuclear fuel cycle 
materials, as well as an established component material in nuclear weapons clearly heads 
the list, and has already been the focus of extensive studies for precision isotopic analyses 
by RIMS (see Isselhardt et al., 2011; Knight et al., 2011; Isselhardt, 2012; Isselhardt et 
al., submitted, and others). The list of additional elements beyond U that has been 
proposed for consideration includes Pu, Am, Cm, Np, Th, and Eu. This list reflects one 
rare earth element and several very heavy elements, all of which (like uranium) have 
significant isotope shifts (i.e., differences in the exact excitation energies of the different 
isotopes), which require evaluated, stable laser conditions for robust application of the 
RIMS to isotopic ratio measurements. Using the above prioritization methodology to the 
list of candidate elements results in the following prioritized list of additional elements 
(beyond U) to be carried forward in this study, in order of interest: Pu, Am and Np (and 
possibly Th and Eu, if resources permit). Each of these elements is briefly discussed 
below. Additional discussions regarding relevance to debris diagnostics were also 
undertaken, but are not appropriate to the scope of the present document. 
 

 
Figure 2: A diagram of average isotopic shifts by element after Stern and Snavely, 1976. 
Isotopic shifts are most prominent in the lightest elements due to large mass differences 
between isotopes, while the heaviest elements, such as the actinides, are deformed nuclei 
(nuclear volume effects).  Nuclear structure effects are also apparent in the rare earth 
element region, peaking with Gd. 

 
 
Pu. Study of the plutonium system of isotopes is of obvious next importance following 
uranium. Plutonium is the next most common nuclear material, after uranium, used in 
both the nuclear fuel cycle, as well as in nuclear weapons. Plutonium concentrations in 
fallout are of order tens of part-per-million and lower, and suffer no dilution from 
environmental contributions. While the majority of RIMS studies for detection of Pu 
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isotope measurements work thus far has relied on combining RIMS methods with 
chemical pre-treatment of the sample (e.g., Donohue et al., 1984; Boulyga et al., 1997; 
Ofan et al., 2006; Erdmann et al., 2009), the success of measuring trace amounts of Pu by 
this method, including work on dissolved environmental filter samples (Eberhardt et al., 
1995), is well established. There is also a small body of published papers focused on 
optimization of Pu laser conditions and Pu spectroscopy (e.g., Sankari et al., 2006; Kunz 
et al., 2005; Kunz et al., 2006). This body of existing work, including key spectroscopic 
studies, enables rapid transfer of our RIMS modeling methods to the Pu system.  Pu-
bearing samples are readily available in a variety of forms, such that minor additional 
parameters required for modeling and study efforts can be established.  
 
Am and Np. Both americium and neptunium are transuranic elements formed primarily 
through nuclear reactions on and/or decaying to uranium and plutonium. Thus, in any 
nuclear event involving uranium or plutonium (from reactors to weapons), isotopes of 
both Am (z=95) and Np (z=93) would be expected to be generated, and can lend 
complementary understanding to fuel isotope measurements. For americium, several 
isotopes can be created which have significant half-lives and production probabilities. 
241Am, produced from decay of 241Pu, is the most common, and has a 432 year half-life. 
243Am is longer lived (7370 years), and can be also produced through neutron irradiation 
of plutonium, as is well established through spent fuel studies. Likewise, two longer-lived 
isotopes of neptunium are produced through neutron irradiation of uranium or plutonium 
(237Np with a half life of 2.14 million years, and 239Np, which decays to 239Pu with a 2.4 
day half life). Preliminary studies of the excitation and ionization schemes of both Np 
(see Reigel et al., 1993; Raeder et al., 2011) and Am (see Deißenberger et al., 1995; 
Kohler et al., 1997; Fivet et al., 2007) have been published, including, for example, a 
report of RIMS detection of 242mAm fission isomers (Backe et al., 1992), but some 
research is still needed to obtain key measurements of hyperfine structure and transition 
probabilities.  
 
Th. Although not a trans-uranic element, thorium (Z=90) is also of interest to nuclear 
materials measurements. All thorium exists in nature as 232Th, and is seen in geologic 
materials in generally in part-per-million concentrations. Additional isotopes of Th, 
however, can be produced through the uranium decay chains.  In particular, 230Th is the 
product of 238U and 231Th is the product of 235U decay. An array of thorium isotopes is 
thus expected in a uranium system in the presence of neutrons, and can be used to 
characterize a system exposed to a high-neutron environment. Focus on the potential of 
the 230Th/232Th geochronometer has advanced resonance ionization work in this area 
(e.g., Johnson et al., 1992; Billen et al., 1993; Raeder et al., 2011). 
 
Eu. In addition to consideration of the above heavy elements, we also considered RIMS 
analyses of fission products. The isotopes of Europium are potential candidates as 
europium (z=63) isotopes (such as 155Eu) can be created through nuclear fission, and can 
also be produced as a neutron activation product (e.g., 152Eu and 154Eu) from naturally 
occurring environmental materials. Eu is one of the few fission products where there are 
significant long-lived isotopes unique to the event representing both a high yield fission 
product and a common activation product. That said, Eu isotopes are present in part-per-
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billion concentrations in post-detonation debris amid part-per-million concentrations of 
environmental isotopes. Such low concentrations are unlikely to be measurable by RIMS 
though direct application of the present analytical methods using no chemical pre-
concentration with the presence of significant environmental backgrounds. Recent studies 
suggest, however, that fission products may have heterogeneous spatial distributions in 
such materials, affording RIMS (inherently a spatially resolved technique) a niche 
through the targeting of highly concentrated areas of interest within single pieces of 
fallout glass. Recent spectroscopy data are available (Nakhate et al., 2000), and Eu 
isotope measurements by RIMS have been reported in environmental wastewater 
(Khalmanov et al., 2002). 
 
Tc. Technetium (z=43) is one of the few non-naturally occurring elements (the other 
being promethium, z=61) with z < 84 (Po). It has no stable isotopes. Studies for RIMS 
have focused on detection of the daughter product Ru (Savina et al., 2004), and 
spectroscopic measurements of ionization potentials (Kluge et al., 1994; Passler et al., 
1997). Tc is of interest as a near-zero background fission product. Because it contains no 
stable isotopes and has significant activity, however, it must be produced for 
measurement and handled with considerable care, make it non-ideal for current studies 
though of future interest. 
 
Cm (z=96), Bk (z=97), Cf (z=98), Es (z=99), Fm (z=100). These transuranic elements 
can all be of interest, as they may be produced in trace or ultra-trace amounts from 
neutron reactions on plutonium and other transuranic elements in high yield (mega-ton) 
nuclear events (Fields et al., 1956), and have near-zero natural backgrounds. Fermium on 
the order picograms of was reported in kilograms of debris recovered from the 1969 
‘Hutch’ event (Hoff and Hulet, 1970). Cm, Bk and Cf can occur as isotopes with half-
lives on the order of years, while no isotopes of Es and Fm have half-lives longer lived 
than hours to days, and are not naturally present even in trace amounts. Studies with these 
elements are accordingly limited by isotope production, and have generally been 
undertaken in collaboration with beam line or other production facilities. Determinations 
of the first ionization potentials for these elements by RIMS are published (e,g., Erdmann 
et al., 1998; Peterson et al., 1998; Sewtz, et al., 2003), demonstrating these elements can 
be resonantly ionized. Due to limited sample availability and research logistics, however, 
other significant RIMS research remains scarce, and would require non-trivial 
investment. 

 
Conclusions 

 
The results of this study confirm the priority preferences anticipated for the first two 
years of the overall NPS-RIMS project, with Pu being the focus of the first year and Am 
and Np being added to the study for year 2. The prioritization study, in addition, provides 
some additional insight into follow-on emphasis in terms of potential additional elements 
to be added in future efforts. 
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